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THEORY OF NUCLEATE POOL BOILING
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AnBoTanus—B gaHHOI CTAThE IPUHATO, YTO TEIIOBOI MOTOK IPH TEIIONEPefaye B yCIOBHAX
KRUITEHHA COCTOUT M3 TPeX KOMIOHEHTOB: IEPBHIf~—IIePeHOC Temya Iy3HpPbKaMU Iapa,
BTOPOH—IIePEeHOC 32 CYET MOJEKYIAPHOI TEIIONPOBORHOCTH FRUTKOCTU ¥ TPETHI—IIepeHoc
3a cueT BUXpeBoi KoHBekuun. IfocmegHuii onpenenserca no xauusM o 6apGoramke. IToxydeH-
Hoe TakuM ob6paszom puddepennuanbHoe YpaBHEHNE JAeT IOCTe UHTErPHPOBAHUA COOTHOIIE-
HHE MeHTy JIOKANBHEIM [MaMeTPOM IIy3HPbKA M TeMIEpaTyPHOIt pasHocTbio. B pesyabrare
HOTY4eHO, 4TO NJIA AOCTAaTOuHO foiabmmx uncen Hycceabra (Nu) ~ (Re)¥® v pomymenun,
4TO YHCIO MY3bIPHKOB OGpATHO NPONOPHMOHAIBHO DagMycy Apapa. Eciam IpemnososuTs,
4TO YHCIO0 IMY3HPLKOB HA eJMHUIYY INIOmMAny o0paTHO IIPONOPIMOHAIBHO Pajuycy fAapa B
crernieHy m, T0 juA Gompmmx ducen Hyccempra (Nu) MOMHO MOIYyUNTH COOTHOLIEHIE

(Nu) ~ (Re)1+m/2 +m
Teope'm'lecmxe JAaHHBIE YAOBJIETBOPUTEJIBHO COTrNAacylTCHA C 9KCIIEPIMCHTAJIBHBIMH .

HKpome Toro, anammsupyercA mepBHIl KPU3UC KANEHNA, BAMAHNAE HATPETHX IIOBEPXHOCTEH 1t
0cO0eHHOCTH MEXHM3Ma IIY3BIPHKOBOTO KUIIEHVIA,

NOMENCLATURE Aj, latent heat of vaporization;

a, thermal diffusivity of the liquid; k, exponent in equation (5.5);
(4r), Archimedes modulus; K, force of friction acting on a
By, Bs, B3, dimensionless parameters, equa- bubble;

tions (2.8) and (2.13); (Kr), Kruzhilin modulus;

By, o, property of the liquid, equation (Ku), Kutateladze modulus;

(4.4); I, characteristic dimension of the
¢, constant in equation (5.5); heat-transfer process, equation
Cps specific heat of the liquid at (1.4);

constant pressure; I, characteristic dimension due to
C, constant, equation (3.5); the properties of the heated
c’, constant, equation (6.2); surface, equation (2.25);

Cp, constant, equation (1.13); m, exponent in equation (2.28);

C., constant, equation (2.11); n, number of bubbles per unit area;

G, constant, equation (1.8); (Nuw), Nusselt modulus;

Cn, constant, equation (1.11); D, pressure;

Cn, constant, equation (B.3); (Pr), Prandtl modulus;

C, constant, equation (1.23); . = (dp/dT)7-r,;

Cu, constant, equation (1.9); q, heat flux per unit area;

C, constant, equation (1.14); q',q9",9""", components of the heat flux due

Cy, constant, equation (1.5); to flow of bubbles, conduction

D, local diameter of a flowing and eddy convection, respec-
bubble; tively;

Dy, diameter of a bubble departing Rq, activation radius of a nucleus;
from the surface; (Re), Reynolds modulus for boiling

D+ = D/Dy, dimensionless bubble diameter; heat transfer;

B frequency of bubble emission; (Re)p, Reynolds modulus for heat

g, acceleration due to gravity; transfer on flowing bubbles;
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Reynolds modulus due to the
frequency of bubble emission,
equation (1.6);

exponent in equation (1.14);
mean temperature of the liquid;
saturation temperature;
difference between the tempera-
ture of the surface and the
saturation temperature;
absolute saturation temperature;
volume of a flowing bubble;
volume of a bubble at the
moment of departure;
dimensionless bubble volume;
relative velocity of a bubble;
velocity of the liquid;

absolute velocity of a bubble;
dimensionless parameter, equa-
tion (2.19);

property of the liquid, equation
4.6);

co-ordinate normal to the heated
surface;

dimensionless parameter, equa-
tion (2.18);

property of the liquid, equation
4.5);

heat-transfer coefficient for nu-
cleate boiling;

heat-transfer coefficient for flow-
ing bubbles;

contact angle;

eddy diffusivity;

friction factor;

temperature difference between
liquid and vapour;

thermal conductivity of the
liguid;
kinematic viscosity of the
liquid;

mass densities of the liquid and
of the vapour, respectively;
surface tension;

time;

constant, equation (4.7);
constant, equation (4.8);

the first crises (burnout) of
boiling.

1. INTRODUCTION
THE SUBJECT of the following analysis is the heat
transfer under conditions of nucleate pool
boling in a superheated liquid on a horizontally
submerged flat plate. Let n be the number of
active sites on the heated surface. Over each
active site there flows a column of bubbles (Fig.
1), each of them being characterized by its

O
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FiG. 1.

volume V, its position y, and its velocity w'’.
Instead of the bubble volume one may introduce
the “mean” diameter

67\ /3
(2"

ks

(1.1)

suggesting that the bubble is spherical, although
in fact its shape is varied, and changes during
the flow.

Let ¥ be the break off volume of the bubble.

The distance
1 1 [6Vo\1/3
QDOWE(T) (1.2)
is used to determine the position y of the bubble
centre (see Fig. 1).
According to Fritz and Bashforth [1, 2} it is

Do = Cy.1, (1.3)
where
o 1/2
= | ————x 1.4
[g(P —p )] (14)
and
Cﬁ ~ 0-0209 .8 (1.5)
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where B is the contact angle in degrees.
The frequency of bubble emission f may be
evaluated from the frequency Reynolds modulus

(Rey =12¢ 1.6

The latter is the function of the Archimedes
modulus

gl pl - PII
(A v/z PI s (1'7)
namely
(Re)r = Cr. (Ar)12, (1.8)

According to Zuber [3] it is Cr=0-59, and
according to McFadden and Grassmann [4]
Cr =056 v/(Cp).

The bubble velocity w'’ may be evaluated as
follows. Let w be the relative velocity of the
bubble in liquid. According to Peebles and
Garber [5] it is

7 — 1 1/2
w—Cy [M] ,

The absolute velocity w'' is somewhat smaller
because of the interference of neighbouring
active sites. Suppose at first that the bubbles
break off simultaneously; then each column
flows in a channel of area 1/n. In real conditions
this area must be larger, namely C,/n, where
Cyn > 1 is a correction factor.

During the motion of the bubble in time
interval d= a displacement dy = w'’ dr causes
the release of space

Cw=118. (1.9)

o

Zpe

7 D*dy,
into which there enters the liquid, flowing
through the free (not occupied by the vapour)
sector of the channel. The area of this sector is

Cn .
it L
Therefore
w dr —C—-——D2 + - Dzdy—O
n 4
where w' is the velocity of the liquid. Thus
2
wl_____ 'I' (71'/4)D wll=§-_y
(Cu/n) — (=/4) D2’ d-r’
(1.10)
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and

’r

w
1 — (#njdCy) . D*

w=w'—w =

"o 1 wh D2
W= ( —ic," .
The growth of the bubble volume V is
governed by heat transfer in liquid. According to
Bosnjakovi¢ [6] it is
daD 2 ap.
dr Al

where ¢ is the mean temperature difference
between the liquid and the vapour, and ap
is the heat-transfer coefficient. The former will
be assumed as the temperature difference at the
place y. This assumption is substantiated for
smaller temperature gradients dz/dy in liquid.
In the vicinity of the heated surface (y = 0)
however, i.e. for the bubble in break-off position,
the temperature difference is supposed to be
greater because of the abrupt temperature
profile at the heated surface. We will assume

Py=0 = Cp. At, (1.13)

where At is the effective temperature difference
between the heated surface and the vapour.

The heat-transfer coefficient ap will be
evaluated from

or

(1.11)

(1.12)

ap. D v
e = C,. (P . (RO, (P) =2, (L14)
where
D D
(Re)p =" = Cuu. 5. (A2 (L15)

according to (1.9,
The heat flux g consists of three components.
The first,

q'=VAi.p".nf (1.16)

results from the motion of bubble columns. This
component is the main part of the heat flux at
some distance from the heated surface. At the
limit y = 0, however, its value is small.

The second component,

det

q'=—X 3’ 1.17)
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is due to the molecular heat conduction in
liquid. This portion is of no importance for
y > 0. In the vicinity of the surface, however,
this component plays a significant role; it
governs, in certain sense, the value of the con-
stant Cp in equation (1.13). In the following
analysis, made for y >> 0, the component ¢”
will be neglected.

The last component, ¢'”/, is due to the turbu-
lent convection. It is given by

X dt

g —— ec, ¥ &y (1.18)

where e is the eddy diffusivity. The latter may
be put proportional to the product of velocity
w and dimension D

e ~wD,

according to the concepts of turbulence [7].
A similar assumption might be made;

dr
where dI is the impulse of friction force
K=§. p’ w2 D? (1.20)

acting on a single bubble in time interval d+:
dI = Kd~.

The friction factor is equal

{ =0-967 17) (1.21)

according to Peebles and Garber [5]. Further-
more dM is the mass of swirling liquid, which is
equal to

dM = we dr.
n

Substitution into (1.19) yields
e ~wn D3
or
e=C,.{wn D3
Using equations (1.9) and (1.21) we obtain

D4
e=C;.vn. " (Ar)t/2, (1.22)

where

Ci = 0967 . C, Cy. (1.23)
Substitution of equation (1.22) into equation
(1.18) yields
rre ’ t D4 D A
g =—X. ., e n~12—(Pr) (Ar)lz,  (1.24)
The described model of nucleate pool boiling
formed the subject of previous investigations of
the author [8], based on the preceding assump-
tions. The theory [8] gives quite correct results
and will be developed and improved in this
paper. In comparison with the analysis in [8],
this theory will neglect the influence of hydro-
static pressure on the saturation temperature ;.
This influence, as it was found [8], is of secondary
importance in problems of nucleate pool boiling.
It will be assumed therefore
I =1— s,

t; = const, (1.25)

where ¢ is the temperature of superheated
liquid.

2, INTEGRATION OF THE HEAT FLUX
EQUATION
The total heat flux is obtained by summation
of equations (1.16) and (1.24). Using equation
(1.1) we get

T Al oy o ve
q—_6D Ai.p'nf /\dng.nl2 (Pr)(4r)

= const. 2.1

From equations (1.12), (1.14) and (1.15) it
follows

o . X . (DY
& AR GG (/)

C(POV3 (Ary2. (22)
But we have
dp_dD dy _ dD
e G
or
dD v ) L/ dD
s Z(AFL2 —_—_pe} . ==
dT‘_Cw. l(AI) .(1 4CnD) dy
2.3)
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by virtue of equations (1.9) and (1.11). Now,
since
dt ddé d& dD

&~ & b &y
we obtain by substitution of equation (2.2)
into equation (2.3)

dr dad
— s—1 -2/3 -1/2
dy =29 . D" C, G571 (Pr)~23 . (Ar)s-
(cpp'/Ai. p") D\s-1
"1 — (@nfaCy) D2 (7) (24)
with
%f =28.C, C5~1 . (Pr)~2/3 , (Ar)s-1r2
(c,p'[Ai. p")  (D\s-1
"1 = (mnjaCy) D2 (1 - @3

Substitution of equation (2.4) into equation (2.1)
yields

s D+3+s dy2
Bi=D" =By e gper @9
where
D D
t o =
is the dimensionless bubble diameter, and
6g 1
B =rrai
B, = § C, Ct C5 C571 . (Pr)=2/3 (Ar)¥?
m (2.8)
vl pP’ 2 ?
"Dl \Ai. p"”
P D:
*T74c,

-

Equation (2.6) can be easily integrated with the
initial condition (1.13), that is

D+ =1 for 9 = C2(Ar2 (2.9)
We obtain
’ 1
BZ [Cg (At)2 —_ 02] —_ 1—__; (D+1—a . 1)
B

1
e ~{2+8) __ o 8—g __
75507 D+Bs [3—s(D+ D

B
+— (D —1)] (2.10)

for 0 < s < 1. Solutions for s =0 and s =1
are given in Appendix A.

On the liquid-vapour boundary it should be
dd/dy = 0, or d#2/d D+ = 0, wherefore ¢"' =0
and

™

q=q =¢Dj

6 max *

Ai. p" nf,

whence

Dnax 3 N
=
The temperature difference on the liquid—-vapour
boundary will be denoted
e = Cp Ce At. (2.11)

Substituting ¢ = d¢, D* == B into equation
(2.10) yields

3 245
o - 1-—-5/3
Be=Bi—q BT
_ £+_§ _ ,3_M 3—s/3
s +Bs. [Bl 33— - By T 3 - s}
2.12)
where
B: =(2+5)B,. C2(1 — C% (A2
6(2
= ~(_.ti)c Ct Cs Cs -1 C2 (1 CE)
wCs
—2/3 ~1/2 cﬂ_”ﬁ 2
.(Pr) (Ar)s . ( AL (2.13)

In this formula the equations (1.6) and (1.8) are
taken into account,
We introduce now the dimensionless groups

al /
W) =5 = 3 2.14)
!
(RO) = g7 @15)
. cp p’ At
(KI’) _2 Al. P”llc-n. (216)

The group (Kr), in which /. denotes the chai-
acteristic dimension, representing the micro-
geometry of the heated surface, is called—
according to a recent proposal—the Kruzhilin
modulus.

The groups Bi, Bz == Y2 and B; = 2XY may
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now be expressed in terms of (Nu), (Re), (Kr),
(Pr), (4r), namely
s 12
GG
Y - VB

62+ 5) q
- :\/l:“WC “‘C Cc C‘g

le  (Nu) (Kr)

[ G0

e

(Pry23 (Arys—11, %f,e)j (2.18)
- B3 . s CB
Y=y~ i6C,
o Cr N
' [6 Q+9)CCCC 0 —C)
(Pr)1/3 (Ar)l—s/4 /
S e

Substituting X and Y into equation (2.12)
yields

J. MADEJSKI

2 - 3 v
2oy =20 x, [Bl————~.B§“"‘3
s 3—5
Lsra 28
A | — JE . -8/ T -
|3—5J ,:Bl 1= B 4+ ms]-w(),
(2.20)
whence
3 248
— . R1-s73 I 2
Y ,\/[Bl lfsB1 +l—s‘LX

BH,fv:;A B? ~-§'3 ,,S ]
L g

(2.21)
This solution is valid only for

1— B3 D >0.

100

s“;,,J ”
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Taking into account equation (2.11) we obtain
the critical condition

1— Bs B =0
or
2XY B =1 (2.22)

The relationships B1(Y) and Bi(B1Y) are shown
in Figs. 2 and 3 for s = 1/2. Figure 4 contains
a comparison of relations Bi(Y) for X =0
and s = 0; 1/2; 1. It is seen that the influence
of exponent s is small,

If B; > 10 the solution (2.21) yields approxi-
mately

Y ~ /B, @2.23)
or
(Vu)
(Rey?
1/3
= [Z—Q'—S C, C: C3 C3 (1 — €Y c;,—l]
1\V3
: (1—) (Pr)V (Ar)s/s (Kr)-V3, (2.24)
[4

The relation (Nu) ~ (Re)?® was observed by
many investigators (e.g. [9, 10]), which indicates
that the Kruzhilin modulus (Kr) must be
independent of the temperature difference At as
well as independent of the heat flux ¢, assuming

HM.—L

00

8

that Cp = const. This condition may be easily
fulfilled if we assume the reciprocal proportion-
ality between the bubble population » and the
activation radius of a nucleus R,

1

n= 'l';“R-a, (225)
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where /. is the characteristic dimension, due to
the properties of the heated surface already
mentioned.

The activation radius is equal to

20 T
=Ar A (2:26)

Substitution of equations (2.25) and (2.26) into
equation (2.16) yields finally

c. p'gl
Ku) = 2—-,
(ki) = 25

8

Ra

(Kr) = (Ku), 2.27)
where equation (1.4) and the Clausius—Clapeyron
equation
. (dp) _AiL
Ps - dT P, - ]ws (p/ . P//)

were taken into account. The dimensionless
group (Ku) is called—according to a recent
proposal of the author—the Kutateladze modu-
lus.

Some investigators [11-14] observed, however,
that the bubble population grows more quickly
with the growth of temperature difference. To
analyse that problem we assume

1

By substitution in equation (2.16) we obtain

I Nu) m-1
(Kr) = (Ku)™ . [21—0 . %%@T)] , (229

which substituted again in equation (2.24)
yields

(Nu)
(Re)t+miz+m

1/2+4+m
_ [2——;’ Sc,Cicere eyl — cg)]

/[ \2-m/2+m
. (f) L (Pr)ttami6+3m _ (Ky)~(m/24m)
le
(2.30)
For m = 3 we obtain (Nu) ~ (Re)%8,

3. THE FIRST CRISIS OF BOILING

It has already been pointed out that the
obtained solution is valid for

1— B3 B3>0

J. MADEJSKI

only. The criterion

1 —B3BI3 =0, or 2XYB¥=1 (3.1

is identical with the condition w'' =0 for
D+ = B},

Thus, if the vapour flow is stopped, the liquid
will quickly evaporate forming a vapour layer
near the heated surface. Although there exist
other criteria of the burnout [15], we may regard
the condition (3.1) as a criterion of the first
crisis of boiling.

In the region of By > 10 the relation (2.23)
may be used. Substitution of equation (2.23)
into equation (3.1) yields

1 \67
Bisns — (53] (32
and
1\97
(YBy)kr1 = (2‘1‘7) (33
or
1 \2/7 ,
(Re)kr,1 = C. (—IC) (Kry7
(Pr)m@ED (drytte . (3.4)
with
C— 7 Cy Cg 8 C1z\)2/7
- 12 \#Cg

LS

17
C,CCC (1 — C3) Cl] .
T Lf

(3.5)
From equations (2.29) and (2.30) it follows

(Kr) ~ (Re)l—m/‘erm,
which substituted in equation (3.4) yields

(Re)kr.1 ~ (Ar)da+7m/12+9m) . (1=514)  (3,6)
Assuming m = 1, s = 1/2 we get

(Re)kr,1 ~ (AP)928 ~ (A2,
which is confirmed experimentally [16]; it

agrees also with other theories [15]. Labuntzov
[17] has suggested

(Re)gr,1 ~ (Ar)¥3;

this corresponds to the value m = 14/9 ~ 1-56
at s &~ 1/2 assumed.
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4, COMPARISON WITH EXPERIMENTAL
DATA FOR WATER

The comparison was done for m =1 and
s = 1/2. It was assumed Cy = 0-59 (after Zuber

[3D, Cw = 1'18 and C, = 1:258.

The parameters B;, ¥ and X may be expressed
as follows

By = ¢ By,0 (Nu), “.1)
(Re)
Y= l/l Yo mj, (4.2)
Xo
X = W’ 4.3)

where B1,0, Yo and Xj are factors, which depend
only upon the properties of the boiling medium;
namely

12 (Ku)
Bi,o =7C1° (Pr) (A2’ 4.4
Yo = \/ L—Ciicg—z] .(Pr)¥3 . (4r)-V8, (4.5)
T m Cy CIIU/Z (Pr)v/3 (Ar)vs
X°:ia‘c7,'~/[ 15 ] K

The graph Bi,0; Yo; Xo; B1,0. Yo vs. pressure p
is given in Fig. 5 for water.
The next group of factors

I
¥ = vIC, G G CY? (1 — CI)] (4.3)

contains factors, which depend upon the rough-
ness and material of the surface (/) and upon
the conditions of the contact (Cy). The numbers
C:, C,, Cp and C, not known at the outset, are
included. It is to be emphasized that the separate
values of these numbers are of secondary
interest.

Comparison with the experimental data
should be done in this way. Suitable values ¢ and
» must be found to make theory agree with
experiment. From the latter we know the values
of

B

B1,0 . (Nu_) = E,

163

10°
B, in meters™! /
02| Yo dimensionless -
R e
Xy in meters P /r
10
Lt~ o
\ A
~ o "
¥ —
o' // o
7
I° \\ .
\\‘\ 8o
16° W \\'
N
\\
16* . N I
B,075] N
S TN
! i
| RESN
~
lcs6| 2 PR 10 20 a0 60 100 =
L, atm
FiG. 5.
Re Y
y RO_Y
(Nu) ¢
and
Xo=Xd4.
Now the graph

s

should be drawn on tracing paper. By super-
posing this tracing paper on the graph from
Fig. 2 and shifting it in the direction of the
co-ordinates a position may be found, in which
the experimental points are possibly near to the
theoretical curve. The logarithmic scales of the
graphs must both be the same, of course. Now,
from the mutual displacements of the co-ordinate
systems the coefficients ¢ and ¢ may be evaluated,
since

B

log 3

=log By — log ¢
and

Y
long =1log Y — log ¢.
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The values of ¢ and ¢ so obtained are of course
approximate. The correct values are to be
calculated together with the parameter X.

The results of the comparison with the exper-
ments [18-22] are shown in Fig. 6. Figure 7

10

of-® Reference [18]
s»A] Reference [19]
Ay FO3atm  Reference [20]
[ Reference [21]
c J, Reference [22)
‘o 35l atm
v 816 atm
Y186 am
o 362 atm Reference f22]
¢ 536 atm

nst® 775 atm

T
]
Lol
el o —r
! I

OCII!L e —<‘; :’
[
oo + ,,+ - . . .
Cor b v er
630m 242 0210
001 4
N A 4 396m 190 0209
scosl o A B2m 0205 0133
/(2/9 I82m 0132 0099

shows the relationship (Nu) = f[(Re)] obtained
from this theory with ¢ =396 m, ¢ =19,
compared with experimental data of Cichelli
and Bonilla [22] for heat transfer in boiling
water under pressure. This graph is reproduced
from author’s paper [8] and shows the influence
of the depth of water layer H; the extreme values
lie at H =0 and at H = 0-5 m. It is seen, as
was indicated before, that the influence of hydro-
static pressure is small.

The functions Bj,p and Xp may be expressed
for water by the following quite accurate
formulae

Bi, = 2286 x 1072, p1-681

Xo = 5260 x 102 pl'™9, [p] = atm,} (4.9)

J. MADEJSKI

oo T hl
o ! .

775atm :
/ PR
7 Lt

FiG, 7.

which are valid for 1 < p < 170 atm.
An analogous expression

Yo = 0-656 x p-0188

is valid for 1 < p < 30 atm.
If By > 10, then Y ~ 4/B; and
(Re)

i YDW & [¢ B1,0 (Nu)Ji/2

(4.10)

or

(Nu) Y2 Yo Vs
Using equations (4.9) and (4.10) we obtain

N 2\1/3
s~ () 26070

From Fig. 6 it is seen that the value of (42/¢$)1/3 is
little affected by the choice of ¢ and . Assuming
(Y2/H)L3 = 0-209 we obtain from experiments of
Cichelli and Bonilla

(N
(Re)23

for water at p << 30 atm.
The critical heat flux may be evaluated from

equation (3.3) with use of equations (4.1).
(4.2) and (4.3); the result is

4.12)

ry 0-556 p0-435 4.13)

(Re)kr,1 = (¢ $)*7 EX B T 4.14)

Substitution of equations (4.9) and (4.10) yields

(Re)xr,1 ~ (¢ )27 1200 p~9'354,  (4.15)
Assuming ¢ = 396 m, = 1-9 we obtain
(Re)kr,1 ~ 7960 p~0354 (4.16)

for water at p < 30 atm.
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log =

by W)

FiG. 8.

5. REMARKS ON THE INFLUENCE OF THE
HEATED SURFACE

Suppose there exists a relationship log (B1/$)
= fllog (Y/#)] for a certain fluid with ¢ = ¢q,
¥ =g (X ~ 0 assumed), as shown in Fig. 8
by curve a; if the roughness or material of the
surface are changed we should have ¢ = ¢,
Y ==tsp. The corresponding curve b may be
drawn by shifting of the curve a in the direction
of log (B1/¢) by log (é4/ds), and in the direction of
log (Y/4) by log (fa/s) as shown in Fig. 8.
The points 4 and B have the same values of B;
and Y.

Now, if in both cases the contact angles, B,
and consequently the values Cj, are the same,
according to equation (4.8) we should have ¢, =
Jp. and the displacement of the curve a into
position b is vertical only. In this case the only
difference may be the roughness of the surface,
which influences the characteristic dimension /.
Thence

ba le,a da
IquS = log lc,b’ log¢b = 0. (5.1)
Suppose now that the surfaces have the same
characteristic dimension /.. Then, according to
equation (4.7), (4.8) and (1.5)

¢a Bb

Cy
logd5 »«2logC~——21g/8 5.2
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and

o 1. Cpa /3b
Io g¢ 4logcﬂ’b 41 B’

(5.3)

The slope of the shifting straight line 4B, shown
in Fig. 9, is —1/8.
Similar relations exist in the diagram

og 7 = [ ﬁl]

which corresponds to the relation (Nu) = f[(Re)].
This is illustrated in Fig. 10. For /¢,q = I¢,» We
obtain

dada T, By

dobe 4 “Ba’

so that the slope of the shifting line 4B is 7/8.

In general, the curves a and  may intersect
(point C in Fig. 8). It means that in point C
the same values of (Nu) and (Re) exist for both
cases. The slopes of the tangents are different,
however.

Although the relationships log B1 = f(log Y)
are not represented by a straight line it is
possible to write down the equation of the
tangent for every point of the curve. In the
vicinity of that point the tangent is an approxi-
mation of the analysed relationship. We thus
obtain an equation

log

(5.4)

By =c. (Bl Y)k, (55)
b
log ¢ -4
¢
~ 3
a
UYg
g
]
y
-————/ A
Lo — X
4log /9” 4 log

FiG. 9.
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log &
4
FiG. 10.
where
dlog B; B
= dlog B Y) ‘"B O

The functions & and ¢ may be obtained from
equation (2.21); for X ~ 0 and s = 1/2 it is
_ B — Bll/6 -1
k= [1 + "“2’?2—}

Figure 11 shows the relationship c and k vs. By Y.
If m = 1 the equation (5.5) corresponds to the
usual equation

(Nu) = ¢’. (Re)*. (5.8)

If experiments are done within an interval of

5.7

J. MADEJSKI

the heat flux with the same liquid at the same
conditions save the material of heated surface,
the curves log (B1/¢) = f[log (B1Y/$ ¢)] lie in
the same interval of (ByY/¢ ). The curves for
material with greater values of the contact angle
B are shifted up and to the right (curve b in Fig.
10). In the examined interval of (B1Y/$ ) the
upper curves have smaller slopes. This is con-
firmed by recent experiments of Kostin [23].
This investigator has found for nucleate boiling
of water on aluminium surface

a == 1549 40-369,
and on nickel surface
o = 4-04 q0'675

atg = (2....15) 104 kcal/m2h. The roughness
of the surfaces was the same.

Now, it was observed by the author that the
contact angle of water on aluminium is con-
siderably greater than on copper, brass or nickel.
This fact should be stressed since there are no
data on this topic in literature.

6. THE MECHANISM OF NUCLEATE BOILING
AS RESULT OF THE MODEL ASSUMED
For technical purposes it is sufficient to know
the relationship (Nu) = f[(Re)], which was
obtained and discussed above. However, to
clarify the physical problem of nucleate pool

18 T T T
\ ‘ ’, 1
6
\\ ‘
v IR o ‘LA
\/ + '7 loge ! ‘
12 ! \ Jo—
'.C T — T — N - J;
08 + \\\ k- o]
L i : !
e ST
* ‘ !
\\ .
o2 / o \‘\ | " H— J,A
/-/ l ! I !
O I i 1
2 LI (e 5 10 2 s 0 2 5 10? 5 0% s 0%
8y
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boiling it is necessary to examine the mechanism
of the phenomenon.

Three topics are of interest in this case, namely
(1) the volume history of the bubble ¥(7), (2) the
temperature distribution #(y), and (3) the path
of centre of gravity of the bubble y(7).

The relation #(D+) was already found [equa-
tion (2.10)]. Substitution of equations (2.7), (2.8),
(2.14) and (2.15) into (2.5) yields

dD+ ) Dt
Ao "G T=mD™ ©D
where
C'=2C,C51.C572.Cy
. (P’zl];—?;;Re)_ -2, (62)
Integrating equation (6.1) we obtain
D+
C,%=J (1 — By D*) D+~ CbﬁAth , (6.3)

1

or D+ = D+¥[C'(y/D)], which substituted into
equation (2.10) yields

U 'Yy
vyl (C ?)'
To find the relation y(r) we use the equation
(2.3); the result is

6.4

g—i = Cy .il,(Ar)lf2 . (1 — B3 D*%
or
C'd(y/i
S =C Calary®. (1 — By D), (69

where the relation D+ C’'(y/l)] was given above.
By integration we obtain

, g
Y e | SO o

2~ C Cy(Ar'?|1— Bs D¥"
4]

For B3 €1 (i.e. for X € 1) and small D+
we obtain a reasonable linear dependence
between y and 7, which was observed by Jakob
([24], p. 632).

To obtain the relation +/(7) we multiply
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equations (6.1) and (6.5); the result is
dD+
, 12 s-1
d(vB) = ¢ Coldn) b
(6.7)
Introducing the reduced volume
vV
+t = - = +3
Vi=g-=D (6.8)
we get
av+
’ 1/2 +s+1/8
Yool =3 C' Cy(Ar) t‘V
6.9
and finally
’ V+
V_T — 1 V+—(a+1/a)
2 3CCy(drpe”
1
A
L& (6.10)

F)

where #/(Cp At) is expressed in terms of ¥+,
The integrals in equations (6.4), (6.6) and
{6.10) should be evaluated numerically.
For Bz~ 0 and By > 10 one can obtain
considerably simpler relations. Namely, it
follows from (2.10) that

( i )2_1+ 1 [ L pu-i_y
CoAt] B, (CpAt)2" [1 —s

By
24+

for B3 = 0. Since for By > 10 it is B; ~ Bs we
get

DL (Dtien — 1)]

& \2 = C?+ (1 — C%). |D+t+
Cp At ¢ e "

2+s Dt — 1]

= T B

If B2 is sufficiently great and C, sufficiently
small, we obtain approximately (for smaller
D+t)

)

+~(3+2/3)
Ga~P
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D+ ! |
Y| pro-tin gp+ — 1 L S0 T ‘
o J.D dD* =5 70 /
' (D ) 60— §4o — j‘
. . 50— N
according to equation (6.3) for Bs = 0. Thence £ 30 . j
40— i
s y]Vis—(e/2)] R 1 ‘
D+ = [1 + (3 —_ i) Cl?] 6.11) ™ 30— 20— ]
and 2o 0 _ L]
9 s\, y]-eee-s 10} ‘ ‘ ‘
Cb At - [l + (3 B i) . C _l] (6.12) 0= o} [le] 20 3L 46 56
60
From equation (6.6) it follows for B3 =0 c'c \ar )%u'r/ 2
VT _ 1 y Lob it |
T Cup (Ar)12 ° 7’ 0 005 O 015 02025 03 035 04
T, S
which substituted into equation (6.11) gives Fic. 13.

D+ = [1 + (3 - ;) C’ Cu(ry2. o5

and

pr— [1 + (3 - g) C’ C (A2,

v 1.] 1[3—(s/2)]

v +]8/(8—(s/2)1
7]
(6.13)

An example of relationships (6.4), (6.6) and
(6.10) is shown in Figs. 12, 13 and 14 for an

experiment of Jakob and Fritz [20] (water, p =
1-03 atm). The temperature distribution (Fig. 12)
was also reproduced in [9] Fig. 11, p. 112).
Values were quoted as follows: g = 39300
kcal/m?h and At = 10-6°C. Hence (Re) == 287-2
and (Nu) = 27-85. This point, marked in Fig. 6
by an arrow, lies to the left of the curve a so
that assuming ¢ = 630 (as for the curve a)
we must assume an increased value of 4. For
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= 2-83 fair agreement with equation (2.12)
is obtained. It follows that Y =19-1 (Bz =
365-7); By = 378-:0and X = 3-02 X 10-5 (B3 =
1155 x 10-3).

It was assumed tentatively Cp = 0-185 and
Ce, = 0-2; the corresponding temperature dis-
tribution, shown in Fig. 12, indicates that Cp
might be assumed larger and C, smaller. For the
liquid—vapour boundary the following was
obtained C’(y/l) = 48-28. This corresponds to
the value of y == 70 mm. Since /== 2-5 mm it
follows C' = 1-724.

The value Cp = 0-185 indicates a 81-5 per
cent temperature drop in the boundary layer.
Since the heat-transfer processes in the boundary
layer are not stationary, and the variations in
temperature distribution are much greater than
in the bulk of liquid, the temperature drop could
not be evaluated from this quasi-stationary
theory. There is no guarantee that the obtained
value Cp = 0-185 is a universal constant.
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From equation (6.2) the value of C, was
calculated. It is C, =159 for the analysed
experiment. Substitution of ¢, Cp, Ce, Cgand C,
in equation (4.8) yields C; ~~ 15-0.

Since all the constants were known, it was
possible to mark the scales in Figs. 12, 13 and 14
in mm or s.
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APPENDIX A
Solution of equation (2.6) for s =0 and s =1
For s = 0 we obtain from equation (2.6)

D+
1--By D+ "

dg?

Bl = D+3 e Bz’ . d'-L—): (Al)

or integrated with condition (2.9)
B[C2 (A1) — 9] =
B/ 1 1 s
1— D+ — T(F_ 1) -- B3 l:g(D
—1)—Biln D+] (A.2)
Taking into account the condition (2.11) we get

BZ:BJ_——:’,BIM—{—Z

— (2/3) B3[Biln B+ 1 — Bj]. (A3
For s = 1 the equation (2.6) reads
, D+t d2
— L _
By = D+ BZ'I—B3D+2'dD+' (A.4)

The equation, corresponding to (A.3), is

Bz——‘Bl—lnBl——l—?’Bs

3 1
[Bl — 5 BIP 5]. (A.5)

APPENDIX B
Mean temperature of the liquid at the heated
surface

As it was indicated before, we operate not
with the actual but with the mean temperature
difference #. If we extend the solution #(y) into
the boundary layer (— (1/2)Dg << y < 0) the re-
sult for y = — (1/2)Dy will indicate approxi-
mately the mean temperature of the liquid at the
surface. For this purpose we find d#/dy for y =0,
combining equations (6.1) and (2.6); thus

d At/ s\ D*¥*— B
— = — C?%y . — JEE [
5= CG—cy. (1 J 2). g
and

dd At
—| =—CGa-—- )=
(dJ’)y=0 G e l

5 Bl—-l

Assuming linear temperature distribution in the
boundary layer we obtain

(B.1)

Om — Cp At dd
Dol2 (d—J’)y:O’ (B2
where

is a hypothetic mean temperature difference of
the liquid at the surface. Equating the left-hand
sides of (B.1) and (B.2) and solving for Cy, we
get

245 o Bi—1
-7 ]

(B.4)

For the numerical example, discussed in Section
6, we obtain C,, = 0-392 (for s = 1/2).

Now, after the departure of the bubble the
colder liquid approaches the wall; the minimum
temperature difference of this liquid may be
estimated from Fig. 12 for y = (1/2) Do. Its value
is approximately 0-6 Cp At = 0-11 At. The maxi-
mum temperature difference of the liquid at the
wall is Az. The arithmetic mean is therefore
0-555 A¢t. There is evidently some relation
between this value and the value of Cy, At.
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Abstract—It is assumed in the following study that the heat flux in boiling heat transfer consists of
three components: the first due to the flow of columns of bubbles; the second due to the molecular
heat conduction in the liquid; and the third is due to the eddy convection. The latter is estimated from
the data on the bubbling process. The differential equation obtained gives after integration a relation-
ship between the local bubble diameter and the temperature difference. As a result it is found that
(Nu) ~ (Re)*3 for sufficiently great Nusselt moduli under the assumption that the bubble population
is inversely proportional to the radius of a nucleus. If one assumes that the number of bubbles per
unit area is inversely proportional to the radius of nucleus to the m-th power, the relation

(Nu) ~ (Re)1+m/2+m

may be obtained for large (Nu).
The theory is compared with experiments with satisfactory results. Furthermore the first crisis of
boiling, the influence of the heated surfaces and the peculiarities of the nucleate boiling mechanism
are analysed.

Résumé—On suppose dans I'étude suivante que le flux de chaleur dans le transport de chaleur par
ébullition se compose de trois composantes: la premiére due a 'écoulement de chapelets de bulles; la
seconde due a la conduction moléculaire de la chaleur dans le liquide; et la troisiéme est due 4 la
convection turbulente. La derniére est estimée & partir des données sur la proccessus du bouillonne-
ment. L’équation différentielle obtenue donne aprés intégration une relation entre le diamétre de
bulle local et la différence de température. En résultat, on trouve que Nu ~ (Re)?/3 pour des nombres
de Nusselt suffisamment élevés avec ’hypothése que le nombre de bulles est inversement proportionnel
au rayon d’un germe. Si on suppose que le nombre de bulles par unité de surface est inversement
proportionnel au rayon du germe a la puissance m, la relation:

(Nu) ~ (Re)t+miztm

peut étre obtenue pour de grands Nu.
La théorie s’accorde avec ’expérience d’une maniére satisfaisante. De plus, on a analysé la premiére
crise de Pébullition, 'influence des surfaces chauffées et les particularités du mécanisme de 1’ébullition
par germes.

Zusammenfassung—In der folgenden Untersuchung des Wirmeiiberganges beim Sieden wird angenom-
men, dass der Warmefluss in drei Komponenten zerlegbar ist: erstens, in einen Fluss in den Blasen-
sdulen; zweitens, in einen Fluss molekularer Wirmeleitung in der Fliissigkeit und drittens in einen
Fluss durch Wirbelkonvektion. Letzter ist aus Werten der Blasenbildung abzuschitzen, Die Integration
der Differentialgleichung fiihrt zu einer Beziehung zwischen dem &rtlichen Blasendurchmesser und
der Temperaturdifferenz. Fiir geniigend grosse Nusselt-Zahlen und mit der Annahme, dass die
Blasendicke umgekehrt proportional dem Keimradius ist, folgt Nu ~ Re2/3, Nimmt man an, dass die
Zahl der Blasen pro Flicheneinheit umgekehrt proportional dem Keimradius zur m-ten Potenz ist,
so ergibt sich fiir grosse Nu die Beziehung

Nu ~ Rel+tm/2+m
Die Theorie ldsst sich mit Experimenten zufriedenstellend vergleichen. Dariiberhinaus werden der

erste Wendepunkt der Siedekurve, der Einfluss der Heizflichen und Besonderheiten des Mechanismus
des Blasensiedens analysiert. )

171



