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THEORY OF NUCLEATE POOL BOILING 

J. MADEJSKI 

Politechnika Gdadska, Gdadsk, Poland 

CReceioed 17 April 1963) 

AmoTaqm-B AaHHOt CTaTbC IIPHHHTO, HTO TWU’IOBOti IIOTOK II&HI TCIIJIOIICpCJuW? B J’CJIOBHHX 
KHIIeHHH COCTOHT II3 TpCX KOMIIOHCHTOB: IIepBhIn- nepeHoc TenjIa ny3bIpbKaMII napa, 
BTOpOn-IICpCHOC 38 CHCT MOJIeKyJIHpHOn TCIIJIOnpOBO~I~OCTH HHIHKOCTH H TpeTHn-IICpCHOC 
3a C4eT BMXPCBOH KOHBCKHHH. nOCJrt?JIHHZi OIIpeAeJIRCTCK II0 AaIiHbIM 0 6ap60Ta)Ke. nOJIyHCH- 
Hoe TaKIIM 06paaoM ~H$j~epeHHHanbIIoe ypaBHeHHe AaeT nocjIe HHTerpnpoBaHKH cooTHoIHe- 
HHC MCIKJJy JIOKaJIbHbIM JIHaMCTpOM II~:lEJpbKa II TCMIICpaTypHOH PWHOCTbIO. B pC3yJIbTaTC 
IIOJIyWHO, HTO AJIH JJOCTaTOWIO 60JIbIIIHX HHCCJI HyCCCHbTa (NU) - (&)2’8 B ~OIIylqeHHH, 
‘IT0 YHCJIO IIJQbIpbKOB 06paTHO IIpOIIOpHHOHajIbHO paAIIYCy l=IQa. &III IIpC~IIOJIOHWTb, 
4TO HHCJIO IIY3bIPbKOB Ha C@IHHHy IIJIOIIKIJuI o6paTIIo IIpOnOpHHOKaJIbHO PanHyCJ’ fIJIpa B 
CTCIICHM m, TO &7IH 6OnbHIHx HIICe.? HyccenbTa (NU) MOH(H0 nOJIJ’WITb COOTIIOI.IIeIIHe 

(Nu) - (Re)l+m’z+m 

Teopemsecmre J&aHHhIC y~OBJICTBOpHTCJIbH0 COIYElCyIOTCH C 3KClIePIIMeHTaJlbIIbIIUIII. 
RpOMC TOrO, aHaJIH3HpyCTCH IICpBbIt KpH3HC KHIICHHH, BJIHKHHC IIaI’pCTbIX IIOBCPXHOCTCI? II 

OCO6CHHOCTH MeXaIIR3Ma IIy3bIpbIFOBOrO IEIIII~IIMFT. 

NOMENCLATURE 

thermal diffusivity of the liquid; 

Archimedes modulus; 

dimensionless parameters, equa- 
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property of the liquid, equation 

(4.4); 
constant in equation (5.5); 

specific heat of the liquid at 
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constant, equation (3.5); 

constant, equation (6.2); 
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constant, equation (2.11); 
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constant, equation (1.11); 

constant, equation (B.3); 
constant, equation (1.23); 

constant, equation (1.9); 

constant, equation (1.14); 

constant, equation (1.5); 
local diameter of a flowing 

bubble ; 
diameter of a bubble departing 
from the surface; 

D/Do, dimensionless bubble diameter; 
frequency of bubble emission; 
acceleration due to gravity; 
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42 
4’2 4”, q”‘, 
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latent heat of vaporization; 

exponent in equation (5.5); 

force of friction acting on a 

bubble; 
Kruzhilin modulus; 

Kutateladze modulus; 

characteristic dimension of the 

heat-transfer process, equation 

(1.4); 
characteristic dimension due to 

the properties of the heated 

surface, equation (2.25); 

exponent in equation (2.28); 

number of bubbles per unit area; 

Nusselt modulus ; 
pressure; 

Prandtl modulus; 

= (dp/dT)r=T,; 
heat flux per unit area; 

components of the heat flux due 

to flow of bubbles, conduction 

and eddy convection, respec- 
tively; 

activation radius of a nucleus; 
Reynolds modulus for boiling 

heat transfer; 

Reynolds modulus for heat 
transfer on flowing bubbles; 
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THE SUBJECT of the following analysis is the heat 
transfer under conditions of nucleate pool 
boling in a superheated liquid on a horizontally 
submerged flat plate. Let n be the number of 
active sites on the heated surface. Over each 
active site there flows a column of bubbles (Fig. 
I), each of them being characterized by its 

v vo, 

Reynolds modulus due to the 
frequency of bubble emission, 
equation (1.6) ; 
exponent in equation (1.14) ; 
mean temperature of the liquid; 
saturation temperature; 
difference between the tempera- 
ture of the surface and the 
saturation temperature; 
absolute saturation temperature; 
volume of a flowing bubble; 
volume of a bubble at the 
moment of departure; 
dimensionless bubble volume ; 
relative velocity of a bubble; 
velocity of the liquid; 
absolute velocity of a bubble; 
dimensionless parameter, equa- 
tion (2.19); 
property of the liquid, equation 
(4.6); 
co-ordinate normal to the heated 
surface; 
dimensionless parameter, equa- 
tion (2.18); 
property of the liquid, equation 
(4.5); 
heat-transfer coefficient for nu- 
cleate boiling; 
heat-transfer coefficient for flow- 
ing bubbles; 
contact angle; 
eddy diffusivity; 
friction factor; 
temoerature difference between 

volume V, its position y, and its velocity w”. 
Instead of the bubble volume one may introduce 
the “mean” diameter 

suggesting that the bubble is spherical, although 
in fact its shape is varied, and changes during 
the flow. 

Let VO be the break off volume of the bubble. 
The distance 

P’, P”, 

liquid and vapour; 1 
thermal conductivity of the 

1 6Vo 1;s 
2Do=z T 

( 1 
U-2) 

liquid ; 
kinematic viscosity of the 
liquid ; 

is used to determine the position y of the bubble 

mass densities of the liquid and 
centre (see Fig. 1). 

of the vapour, respectively; 
According to Fritz and Bashforth [I, 21 it is 

surface tension; 
time ; 

Do = Cl . I, (1.3) 

constant, equation (4.7); where 

constant, equation (4.8); 
l = [& ” J2 (1.4) 

Subscript 
kr,l the first crises (burnout) of and 

boiling. 

1. INTRODUCTION 

0 
0 

0 

FIG. 1. 

(1.1) 

Ca M 0*0209 . g (1.5) 
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where /I is the contact angle in degrees. 
The frequency of bubble emission f may be 

evaluated from the frequency Reynolds modulus 

(&)f = fs 
I * V (l-6) 

The latter is the function of the Archimedes 
modulus 

,,=$.Lz& (1.7) 

namely 

(Re)f = Cf. (Ar)li2. (1.8) 

According to Zuber [3] it is Cf = 0.59, and 
according to McFadden and Grassmann [4] 
Cf = 0.56 z/(C,>. 

The bubble velocity w” may be evaluated as 
follows. Let w be the relative velocity of the 
bubble in liquid. According to Peebles and 
Garber [5] it is 

11’ = cw [“““b- P")]"', cw = 1.18. (1.9) 

The absolute velocity w” is somewhat smaller 
because of the interference of neighbouring 
active sites. Suppose at first that the bubbles 
break off simultaneously; then each column 
flows in a channel of area l/n. In real conditions 
this area must be larger, namely C&r, where 
C, > 1 is a correction factor. 

During the motion of the bubble in time 
interval dr a displacement dy = w” dT causes 
the release of space 

; D2 dy, 

into which there enters the liquid, flowing 
through the free (not occupied by the vapour) 
sector of the channel. The area of this sector is 

Therefore 

G _ _ ; 02. 
n 

w’d7 ($-;Dz) +$Dsdy =0, 

where w’ is the velocity of the liquid. Thus 

(r/4) D2 
w’ = -w” ’ (c,&) _ (1T/4) D2 2 w” = $, 

(1.10) 

and 

IV = IV” - )V’ Z 
IV” 

1 - (?m/4Cn) . 02 

or 

w” =w 
i 

(1.11) 

The growth of the bubble volume V is 
governed by heat transfer in liquid. According to 
BoSnjakoviC [6] it is 

dD 2ao.9 
-= 
dr Ai. p” ’ 

(1.12) 

where 6 is the mean temperature difference 
between the liquid and the vapour, and aD 

is the heat-transfer coefficient. The former will 
be assumed as the temperature difference at the 
place y. This assumption is substantiated for 
smaller temperature gradients dt/dy in liquid. 
In the vicinity of the heated surface 0, = 0) 
however, i.e. for the bubble in break-off position, 
the temperature difference is supposed to be 
greater because of the abrupt temperature 
profile at the heated surface. We will assume 

&,=o = Co . At, (1.13) 

where At is the effective temperature difference 
between the heated surface and the vapour. 

The heat-transfer coefficient aD will be 
evaluated from 

(1.14) 

where 
WD 

(Re)D = 7 = etc. - 
V 

ff. (Ar)1’2 (1.15) 

according to (1.9). 
The heat flux 4 consists of three components. 

The first, 

q’ == V Ai , p” . nf, (1.16) 

results from the motion of bubble columns. This 
component is the main part of the heat flux at 
some distance from the heated surface. At the 
limit y = 0, however, its value is small. 

The second component, 

q” = _ ,I’ !I!! 
dy’ 

(1.17) 
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is due to the molecular heat conduction in 
liquid. This portion is of no importance for 
y > 0. In the vicinity of the surface, however, 
this component plays a significant role; it 
governs, in certain sense, the value of the con- 
stant Cb in equation (1.13). In the following 
analysis, made for y :> 0, the component (7” 
will be neglected. 

The last component, q”‘, is due to the turbu- 
lent convection. It is given by 

where E is the eddy diffusivity. The latter may 
be put proportional to the product of velocity 
IV and dimension D 

E N wD, 

according to the concepts of turbulence [7]. 
A similar assumption might be made; 

dI 
ENdM.D 

where dl is the impulse of friction force 

(1.19) 

5 K=8.p’whrD2 (1.20) 

acting on a single bubble in time interval d7: 

dI= Kdr. 

The friction factor is equal 

5 = 0.967 ; (1.21) 

according to Peebles and Garber [5]. Further- 
more dil4 is the mass of swirling liquid, which is 
equal to 

Substitution into (1.19) yields 

E N 5 ,vn D” 

or 

E = Ci.<wn D3. 

Using equations (1.9) and (1.21) we obtain 

E = Ct . v’n . $ (Ar)llz, (1.22) 

where 

Ct =m 0.967 . C; C,. (1.23) 

Substitution of equation (1.22) into equation 
(1.18) yields 

4 1” = _ A’ _ . f, . Ct n z:(Pr) (Ar)l12. (1.24) 

The described model of nucleate pool boiling 
formed the subject of previous investigations of 
the author [8], based on the preceding assump- 
tions. The theory [S] gives quite correct results 
and will be developed and improved in this 
paper. In comparison with the analysis in [8], 
this theory will neglect the influence of hydro- 
static pressure on the saturation temperature t8. 
This influence, as it was found [8], is of secondary 
importance in problems of nucleate pool boiling. 
It will be assumed therefore 

1’) = t - ts, ts = const, (1.25) 

where t is the temperature of superheated 
liquid. 

2. INTEGRATION OF THE HEAT FLUX 
EQUATION 

The total heat flux is obtained by summation 
of equations (1.16) and (1.24). Using equation 
(1.1) we get 

q =iD3 Ai. p”nf’- 
dt D” 

h’ dy Ct . n IT (Pr) (Ar)l12 

= const. (2.1) 

From equations (1.12), (1.14) and (1.15) it 
follows 

. (Pr)1/3 (Ar)Sf2. (2.2) 

But we have 

or 

dD ’ _ = C, . f- (Ar)lt’? . 
dr 

(2.3) 
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by virtue of equations (1.9) and (1.11). Now, 
since 

dt d6 d# CID __=-_=- -- 
dy dy dD * dy ’ 

we obtain by substitution of equation (2.2) 
into equation (2.3) 

$ = 26 . gD. C, CL-~ . (Py)-213 . (Ar)s-1/2 

with 

(c;,‘/Ai . p”) 

* 1 - (m/4&) 0s * (2.4) 

dD 
dV 

= 24 . C, Ch-l . (Pr)-2’3 . (Ar)S-1’2 

(c;p’/Ai . p”) 

* 1 - (~n/4C,) D2 ’ 7 0 
D ‘-I. (2.5) 

for 0 < s < 1. Solutions for s = 0 and s = 1 
are given in Appendix A. 

On the liquid-vapour boundary it should be 
dfi/dy = 0, or dP/dDf = 0, wherefore q"' = 0 
and 

q zqL+ max. Ai. p"nf, 

whence 

= 0;; = B1. 

The temperature difference on the liquid-vapour 
boundary will be denoted 

6, = Cb Ce At. (2.11) 

Substituting 9, = ae, D+ = Bi13 into equation 
(2.10) yields 

Substitution of equation (2.4) into equation (2.1) 
yields 

3 

B1 = Dt” _ B’ _~. 
D+a+s d62 

B2 = BI -I--s . B;--s/3 + z 

2’1 -B3D+2 ’ dD+’ (24 2+s 
- -- . B3 . BI - 5 3, . Bf--S!3 + j& , 

where 
s I - 1 

D D 

D+ =iFo=cg.l (2.7) 
(2.12) 

where 

is the dimensionless bubble diameter, and 

B1 = 6q 

Bz = (2 + s) B; . C; (1 - C;) (At)2 

6 (2 + 8) 

T 0: Ai. p" nf' 
= --&- c, ct c; CL-1 c,z (1 - c”,, 

Bi .= E C, Ct C; C&-l . (Pr)-2/3 (Ar)8/2 
. (Pr)-2/3 (Ar)S-112 . ‘G 

c - 1 
2. (2.13) 

r’ 2 
.f*-. & , 

‘( 1 

+ (2.8) In this formula the equations (1.6) and (1.8) are 
taken into account. 

rrn 0; 
We introduce now the dimensionless groups 

B3 = -4TF . 
J (Nu) = “hf = &, (2.14) 

Equation (2.6) can be easily integrated with the 
initial condition (1.13), that is 

D+ = 1 for C = C,“(At)s. (2.9) 
(Be) == &,, (2.15) 

We obtain 
(Kr) = 

c; p’ At 

B; [C,” (At)2 - TY~] = - ;; (D+l-a - 1) 2 Ai. p” I I, n ’ 
(2.16) 

The group (Kr), in which I, denotes the char- 

- 2!& (D+--(z+a)- 1) + B3 [&, (D+a-J _ 1) acteristic dimension, representing the micro- 
geometry of the heated surface, is called- 

+ “,‘(D+-” - 

according to a recent proposal-the Kruzhilin 

1) 
I 

(2.10) modulus. 
The groups BI, B2 = Ya and Ba = 2XY may 
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now be expressed in terms of (Nu), (I+)), (KF), 
(Pr), (Ar), namely 

Y? ~ 2 Y %J-_s x 
s * . [ 

B1 _ &;. Bf-&3 

12 I, W) (Kr) 
B’=;Fc; * 7. @y@yjEv (2.17) , s 

’ 3-s 1 [ _ B1 _ +;. gl-s:3 + f-2 

I 

; 0, 

Y ~- V'B2 (2.20) 

JL 

6 (2 + S) 
-- TpCf--- c, Ct c; c;. l c; (1 - c;> 

I 
whence 

(P~)““3 (AU)“-l’~ . (Nlr)' We) (2.18) y = 
J[ 

B1 _ i-‘;B;-.y’:l + ;--;-s _I- X” 

B3 n c; 
x == 2r := i6c, . !2fi)I, (By - 33~ J . B~-R’~ (_ 3~“Sj~] 

*J[ 

= Cf ~ .__ 

6 (2 + S) C, Ct C; Cl-l C$ (1 - Cz) 1 _. +?. L B1 _ 1:-S. Bf -S 3 _j_ j% (Pry’3 (Ar)l-s’” I I 
(Kr) . I. (2.19) 

c (2,2 I 
This solution is valid only for 

1 

Substituting X and Y into equation (2.12) 
yields 1 - B3 Dm'> 0. 
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w 
Fro. 3. 

Taking into account equation (2.11) we obtain 
the critical condition 

or 
1 - B3 Bfi3 = 0 

2 XYB2’3 = 1 1 . 

The relationships BI( Y) and Bl(B1 Y) are shown 
in Figs. 2 and 3 for s = l/2. Figure 4 contains 
a comparison of relations BI( Y) for X = 0 
and s = 0 ; l/2; 1. It is seen that the influence 

B, ,. 
B 

of exponent s is small. 
If B1 > 10 the solution (2.21) yields approxi- 

mately 

or 

(Nu) 
(Re)3/3 

2+s 
[ 1 

l/3 
= TC, ct c;+g c; (1 - ct) c;-1 

. ; l/3 (Pry’9 (Ar)S’6 (Kr)-1’3. 0 (2S24) that cb = const. This condition may be easily 

The relation (Nu) - (Re)2/3 was observed by 
fulfilled if we assume the reciprocal proportion- 

many investigators (e.g. [9, lo]), which indicates 
ality between the bubble population n and the 

that the Kruzhilin modulus (Kr) must be 
activation radius of a nucleus Ra, 

independent of the temperature difference At as 
well as independent of the heat flux q, assuming 

H.M.-L 

1 
n=leRa) (2.25) 
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where 1, is the characteristic dimension, due to 
the properties of the heated surface already 
mentioned. 

only. The criterion 

1 - B3 Bf/3 = 0, or 2 XYB:‘“== 1 (3.1) 

The activation radius is equal to is identical with the condition w” = 0 for 
Df = B;l3. 

(2.26) 

Substitution of equations (2.25) and (2.26) into 
equation (2.16) yields finally 

(Kr) = (Ku), (Ku) = p?$‘2 ;!, , (2.27) 
s - 

where equation (1.4) and the Clausius-Clapeyron 
equation 

Ai . p” p’ 

T=Ts = Ts (p’ - p”) 

were taken into account. The dimensionless and 
group (KU) is called-according to a recent 
proposal of the author-the Kutateladze modu- 
lus. 

I, 217 
(Re)m,l = C . - 0 I 

(Kr)*;T 

with 

Some investigators [l l-141 observed, however, or 
that the bubble population grows more quickly 
with the growth of temperature difference. To 
analyse that problem we assume 

1 
n=12-“* (2.28) 

c a 

By substitution in equation (2.16) we obtain 

(Kr) = (Ku)~ . [2; . (;;$],-: (2.29) 

which substituted again in equation (2.24) 
yields 

(Nu) 

(Re) l+m/Z+m 

[ 

2+s 
= y-c, ct c;+* q-1 c2, (1 - cz,> 

1 

1/2+m 

From equations (2.29) and (2.30) it follows 

which substituted in equation (3.4) yields 

Assuming m = 1, s = l/2 we get 
2-m’2+m. (py)4+3m/6+3m . (KU)-(m/2-l-m). 

(2.30) 

For m = 3 we obtain (Nu) - (Re)O+. 

3. THE FIRST CRISIS OF BOILING 

It has already been pointed out that the 
obtained solution is valid for 

Thus, if the vapour flow is stopped, the liquid 
will quickly evaporate forming a vapour layer 
near the heated surface. Although there exist 
other criteria of the burnout [15], we may regard 
the condition (3.1) as a criterion of the first 
crisis of boiling. 

In the region of B1 > 10 the relation (2.23) 
may be used. Substitution of equation (2.23) 
into equation (3.1) yields 

(3.2) 

(3.3) 

217 

(3.5) 

(KY) N (Re)l-m!z+fn, 

(R~)~,,~ _ (Ay)(14+7m/i2+9m) . Wa’1-l). (3.6) 

(Re)Kr,l w (.4r)13128 % (Ar)l ‘), 

which is confirmed experimentally [16]; it 
agrees also with other theories [15]. Labuntzob 
[17] has suggested 

(Re)Kr,l - (Ar)41g; 

1 - B3 B2’3 > 0 1 

this corresponds to the value m = 14/9 R! 1.56 
at s M l/2 assumed. 



s = l/2. It was assumed Cf = 0.59 (after Zuber 
[3]), CW = I.18 and Cn = 1.258. 

The parameters BI, Y and X may be expressed 
as follows 

Bi = + BLO (Nu), (4.1) 

W 
Y=uo(Nu)’ 

x=$$ 

THEORY OF NUCLEATE POOL BOILING 

4. COMPARISON WITH EXPEREMENTAL 
DATA FOR WATER 

The comparison was done for m = 1 and ,02 

163 

where BI,o, YO and XO are factors, which depend 
only upon the properties of the boiling medium; 
namely 

12 (Ku) 
* (Pr) (Ar)1/2’ (4.4) 

. (Pry’3 . (A)-1’8, (4.5) a otm 

FIG. 5. 

The graph Bl.0; Yo; XO; BI,O . YO vs. pressurep 
is given in Fig. 5 for water. 

The next group of factors 

(4.7) 

* = d[C, Ct c,z cp (1 - Ci)] (4.8) 

contains factors, which depend upon the rough- 
ness and material of the surface (rJ and upon 
the conditions of the contact (Cl). The numbers 
Ct, C,, Cb and Ce not known at the outset, are 
included. It is to be emphasized that the separate 
values of these numbers are of secondary 
interest. 

Comparison with the experimental data 
should be done in this way. Suitable values 4 and 
# must be found to make theory agree with 
experiment. From the latter we know the values 
of 

Bl,o . (Ah) = 3 
C’ 

and 

x0 =x+4. 

Now the graph 

log% =f log y 
4 ( ) * 

should be drawn on tracing paper. By super- 
posing this tracing paper on the graph from 
Fig. 2 and shifting it in the direction of the 
co-ordinates a position may be found, in which 
the experimental points are possibly near to the 
theoretical curve. The logarithmic scales of the 
graphs must both be the same, of course. Now, 
from the mutual displacements of the co-ordinate 
systems the coefficients 4 and # may be evaluated, 
since 

and 

log? =logBr-log+ 

1og;=1og Y-log& 
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The values of #I and 4 so obtained are of course 
approximate. The correct values are to be 
calculated together with the parameter X. 

The results of the comparison with the exper- 
ments [18-221 are shown in Fig. 6. Figure 7 

IT 
Reference I I8 j 

Reference I 19; 
Reference [ 201 

Reference J 21 J 

Reference [ 221 

630m 242 0210 

396m I90 0209 

182m 0205 3 133 

shows the relationship (Nu) =S[(Re)] obtained 
from this theory with #J = 396 m, # = 1.9, 
compared with experimental data of Cichelli 
and Bonilla [22] for heat transfer in boiling 
water under pressure. This graph is reproduced 
from author’s paper [S] and shows the influence 
of the depth of water layer H; the extreme values 
lie at H = 0 and at H = 0.5 m. It is seen, as 
was indicated before, that the influence of hydro- 
static pressure is small. 

The functions &,o and XO may be expressed 
for water by the following quite accurate 
formulae 

Bl,o = 2.286 x 10-a. 
_Zy II . = 5 260 x lo- pP-1-6s1’ 2 1.72g, [p] = atm, > 

(4.9) 

Re 

FIG. 7. 

which are valid for 1 < p < 170 atm. 
An analogous expression 

Ye = 0.656 x p-O.188 (4.10) 

is valid for 1 < p < 30 atm. 
If BI > 10, then Y M ~/BI and 

+ y. $$ = [d BI,O (Nu)]1/2 

or 

(4.1 I) 

Using equations (4.9) and (4.10) we obtain 

tNu) M ik2 1’32.66 p0.435_ 

i) (Re)2/3 + 
(4.12) 

From Fig. 6 it is seen that the value of (1c;L/+)r/s is 
little affected by the choice of 4 and #. Assuming 
(#s/#‘s = 0.209 we obtain from experiments of 
Cichelli and Bonilla 

(4.13) 

for water at p < 30 atm. 
The critical heat flux may be evaluated from 

equation (3.3) with use of equations (4.1). 
(4.2) and (4.3); the result is 

Substitution of equations (4.9) and (4.10) yields 

(Re)Kr,i GX (4 #)2/7 1200 p-0.354. (4.15) 

Assuming 4 = 396 m, Q = 1.9 we obtain 

(Re)K,,r R+ 7960 p-O.“s4 (4.16) 

for water at p < 30 atm. 
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and 

#a 1 C,@ 1 fib 
10g~=-$OgcB,;= -410g&. (5.3) 

The slope of the shifting straight line AB, shown 
in Fig. 9, is -l/8. 

Similar relations exist in the diagram 

log; =f log Y$ , [ 1 
which corresponds to the relation (Nu) =f[(Re)]. 
This is illustrated in Fig. 10. For lc,a = lc,b we 
obtain 

(5.4) 

1 so that the slope of the shifting line AB is 7/8. 
In general, the curves a and b may intersect log f 

(point C in Fig. 8). It means that m point C 
the same values of (Nu) and (Re) exist for both 
cases. The slopes of the tangents are different, 
however. 

FIG. 8. 

5. REMARKS ON THE INFLUENCE OF THE 
HEATED SURFACE 

Suppose there exists a relationship log (B&) 
=f[log (Y/+)1 for a certain fluid with (b = &, 
(c, = *a (X = 0 assumed), as shown in Fig. 8 
by curve a; if the roughness or material of the 
surface are changed we should have $ = &, 
# = #b. The corresponding curve b may be 
drawn by shifting of the curve a in the direction 
of log (Bl/+) by log ($a/&), and in the direction of 
log (Y/#) by log (#a/#b) as shown in Fig. 8. 
The points A and B have the same values of B1 
and Y. 

Now, if in both cases the contact angles, ,f?, 
and consequently the values C, are the same, 
according to equation (4.8) we should have & = 
+b. and the displacement of the curve a into 
position b is vertical only. In this case the only 
difference may be the roughness of the surface, 
which influences the characteristic dimension lc. 
Thence 

log& --_; log;& 
4h 

log$=O. (5.1) 
‘> 

Suppose now that the surfaces have the same 
characteristic dimension le. Then, according to 
equation (4.7) (4.8) and (1.5) 

Although the relationships log Bl =.f(log Y) 
are not represented by a straight line it is 
possible to write down the equation of the 
tangent for every point of the curve. In the 
vicinity of that point the tangent is an approxi- 
mation of the analysed relationship. We thus 
obtain an equation 

Bl = c . (B1 Y)“, (5.5) 

log 

--h log $ 
FIG. 9. 
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FIG. 10. 

where 

k = dlogB1 
d log (B1 Y) ’ 

The functions k and c may be obtained from 
equation (2.21); for X M 0 and s = l/2 it is 

k = 1 + Bl- B;‘6 

I 

-l 
2Y2 * (5.7) 

Figure 11 shows the relationship c and k vs. B1 Y. 
If m = 1 the equation (5.5) corresponds to the 

usual equation 

(A%) = c’ . (Re)k. (5.8) 

If experiments are done within an interval of 

the heat flux with the same liquid at the same 
conditions save the material of heated surface, 
the curves log (B&) =f [log (Bi Y/$ I/)] lie in 
the same interval of (BI Y/C+ I& The curves for 
material with greater values of the contact angle 
/3 are shifted up and to the right (curve b in Fig. 
10). In the examined interval of (BI Y/+ I$) the 
upper curves have smaller slopes. This is con- 
firmed by recent experiments of Kostin [23]. 
This investigator has found for nucleate boiling 
of water on aluminium surface 

a zzz 154.9 @369, 

and on nickel surface 

a = 4.04qO.675 

atq=(2.... 15) 104 kcal/mah. The roughness 
of the surfaces was the same. 

Now, it was observed by the author that the 
contact angle of water on aluminium is con- 
siderably greater than on copper, brass or nickel. 
This fact should be stressed since there are no 
data on this topic in literature. 

6. THE MECHANISM OF NUCLEATE BOILING 
AS RESULT OF THE MODEL ASSUMED 

For technical purposes it is sufficient to know 
the relationship (A%) =f[(Re)], which was 
obtained and discussed above. However, to 
clarify the physical problem of nucleate pool 

4r 
FIG. 11. 
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boiling it is necessary to examine the mechanism equations (6.1) and (6.5); the result is 
of the phenomenon. 

Three topics are of interest in this case, namely 
(1) the volume history of the bubble V(T), (2) the 

dD+ 
d ( v’,/12) 

= C’ c, (Ar)1’2. At . D+“-’ . 
b 

temperature distribution S(y), and (3) the path (6.7) 
of centre of gravity of the bubble Y(T). 

The relation $(D+) was already found [equa- Introducing the reduced volume 

tion (2.10)]. Substitution of equations (2.7), (2.8), 
(2.14) and (2.15) into (2.5) yields V+ = ; = D+* (6.8) 

dD+ 9 D+“-’ 
(6.1) 

we get 
C’ d (y/Z) = Cb ’ 1 - B3 D+” dV+ 

where d(v’7/12) 
= 3 c’ Cw (Ar)1’2 . $&. Vtatlls 

b 

C’ = 2 c 
csw*fi*b 

cs-1 C”-” c 

. ‘pr;;u~‘. (A,.)~-112. 
and finally 

(6.2) 

V’T 1 
Integrating equation (6.1) we obtain 

D+ 

C/f= (l-B3D+‘) J 1 
F= 3 C’ Cw (Ar)l’z 

Dt’-” . y dD+, (6.3) 

(6.9 

v+ 

J v+-(&l/S) 

1 
Cb At 

. 6 dV+, (6.10) 

or Df = D+[C’(y/l)], 
equation (2.10) yields 

which substituted into where 8/(cb At) iS expressed in bXIllS Of V+. 
The integrals in equations (6.4), (6.6) and 

(6.10) should be evaluated numerically. 
6 For Ba w 0 and Bl > 10 one can obtain -= 

Cb At (6.4) considerably simpler relations. Namely, it 

To find the relation J(T) we use the equation 
follows from (2.10) that 

(2.3); the result is 1 

dy 
-& = cw . f (Ar) 

B,(CbAt)2’ 
(Dtl-8 _ 1) 

u2 . (1 - B3 D+*) 

or + 2% (D+-(a+,) _ l)j 

C’ d (Y/O 
J 

d (V’T/i2) = C’ CWJ (Ar)1’2 * (1 - B3 D+% (6.5) for Bs = 0. Since for B1 > 10 it is B1 w Bs we 
get 

where the relation D+[C’(y/l)] was given above. 
By integration we obtain 

V’ 7 
C’ (Y/J) 

1 J d [C’ (~I01 -_= 
12 C’ Cw (Ar)1/2 1 _ B3 D> * (6*q 

a 

= C; + (1 - Cz,> . D+-(*+r) 

D+‘-* - 1 2 + s 

+1--s. B2 * I 

For Bs Q 1 (i.e. for X < 1) and small D+ If B2 is sufficiently great and C, sufficiently 

we obtain a reasonable linear dependence small, we obtain approximately (for smaller 

between y and 7, which was observed by Jakob O+) 
(i241, P. 632). 9 

To obtain the relation 2/(~) we multiply 
_ M D+-(a+&9 
cb At 
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0 IO 20 30 40 50 60 70 00 

y+D,/2. mm 
FIG. 12. 

and 
D+ 

CPf = 
s 

D+a-(da) dD+ = 1 

3 - (s/2) 
1 

. (D+S-bla) _ 1) 

according to equation (6.3) for Bs = 0. Thence 

D+ = [l + (3 _;) c’;]1”3-‘s’2’1 (6.11) 

and 

~=[l+(3-~).C’~]-(2+s’s-*~ 

b2- y 

1.1 - I.0 

I.0 - 

0.9- 0.8 

o.a- 

" 0.7- 
' 0.6 

0.6- 
h' G 

0.5- 
0.4 

* 0.4 - 4 

0.3 - 

0.2- 0.2 

0.1 - ! 
1 

O I 0 IO 20 30 40 50 600 

C’Y/L 

(6.12) 

From equation (6.6) it follows for Bs = 0 

V'T 1 

p= cu, (fly - f9 

C’CW(Ar)%+Z 

I I ! II I, / 
0 005 0.1 0.15 0.2 0.25 0.3 0.35 0.4 

r, s 

which substituted into equation (6.11) gives FIG. 13. 

Df = p + (3 4 ~cw(A1)'/2.~]1"3-'s'2" experiment of Jakob and Fritz [20] (water, p = 

and 
1.03 atm). The temperature distribution (Fig. 12) 
was also reproduced in [9] Fig. 11, p. 112). 

J/+= [1 + (3 _ ;) c' Cw(Ar)1/2. fJ'[3-(8'2)'. 
Values were quoted as follows: 4 = 39 300 
kcal/meh and At = 10.6%. Hence (Re) = 287.2 

(6.13) and (Nu) = 27.85. This point, marked in Fig. 6 
by an arrow, lies to the left of the curve a so 

An example of relationships (6.4), (6.6) and that assuming + = 630 (as for the curve a) 
(6.10) is shown in Figs. 12, 13 and 14 for an we must assume an increased value of #. For 
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40 

30 

L/+ 

2c 

10 

o- 

10 - 

O- 

o- 

ld 

0 lo 20 30 40 50 

I I I I I I I I I I 
0 005 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 

T, s 

FIG. 14. 

$ = 2.83 fair agreement with equation (2.12) 
is obtained. It follows that Y = 19.1 (B2 = 
365.7); Bl = 378-O and X = 3.02 x 10-s (& = 
I.155 x 10-S). 

It was assumed tentatively cb = 0.185 and 
Ce = 0.2; the corresponding temperature dis- 
tribution, shown in Fig. 12, indicates that Cb 
might be assumed larger and C, smaller. For the 
liquid-vapour boundary the following was 
obtained CD/l) = 48.28. This corresponds to 
the value of y = 70 mm. Since I = 2.5 mm it 
follows C’ = 1.724. 

The value Cb = O-185 indicates a 81.5 per 
cent temperature drop in the boundary layer. 
Since the heat-transfer processes in the boundary 
layer are not stationary, and the variations in 
temperature distribution are much greater than 
in the bulk of liquid, the temperature drop could 
not be evaluated from this quasi-stationary 
theory. There is no guarantee that the obtained 
Value Cb = 0.185 is a universal constant. 

From equation (6.2) the value of C, was 
calculated. It is C, = 15.9 for the analysed 
experiment. Substitution of #, Cb, C,, C, and C, 
in equation (4.8) yields Ct w 15.0. 

Since all the constants were known, it was 
possible to mark the scales in Figs. 12, 13 and 14 
in mm or s. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 
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APPENDIX A 

Solution of equation (2.6) for s = 0 and s = 1 
For s = 0 we obtain from equation (2.6) 

BI = Dfa - B; . 
D+s 

= (A.l) 
I--B3Df2’ dDf 

or integrated with condition (2.9) 

B, [C; (At)2 - $21 = 

l-D+- +l)+B3[;(D+’ 

-1)-BlInD+ 
I 

(A.2) 

Taking into account the condition (2.11) we get 

B2 = BI - 3 B;‘3 + 2 

- (2/3) B3 [Bl In Bl + 1 - BI]. (A.3) 

For s = 1 the equation (2.6) reads 

BI=D+3-B’ 
Di4 

= (A.4) 2’ 1 -B3D+= ’ dD+’ 

The equation, corresponding to (A.3), is 

B2 = BI - In BI - 1 - 3 B3 

B1 -;B;/3 +; 1 . (AS) 

APPENDIX B 

Mean temperature ?f the liquid at the heated 
surface 

As it was indicated before, we operate not 
with the actual but with the mean temperature 
difference 9. If we extend the solution 6(y) into 
the boundary layer (- (1/2)D0 < v < 0) the re- 
sult for y = - (1/2)D0 will indicate approxi- 
mately the mean temperature of the liquid at the 
surface. For this purpose we find d6/dy for y = 0, 
combining equations (6.1) and (2.6); thus 

d6 
dy=C’G(l- 

and 

. y. (B.1) 

Assuming linear temperature distribution in the 
boundary layer we obtain 

03.2) 

where 

6m = c,l& At 03.3) 

is a hypothetic mean temperature difference of 
the liquid at the surface. Equating the left-hand 
sides of (B.l) and (B.2) and solving for Cm we 
get 

c, = cb 1 + 
1 
. 

03.4) 

For the numerical example, discussed in Section 
6, we obtain Cm = 0.392 (for s = l/2). 

Now, after the departure of the bubble the 
colder liquid approaches the wall; the minimum 
temperature difference of this liquid may be 
estimated from Fig. 12 for y = (1/2)Do. Its value 
is approximately O-6 Cb At = 0.11 At. The maxi- 
mum temperature difference of the liquid at the 
wall is At. The arithmetic mean is therefore 
O-555 At. There is evidently some relation 
between this value and the value of Cnt At. 
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Abstract-It is assumed in the following study that the heat flux in boiling heat transfer consists of 
three components: the first due to the flow of columns of bubbles; the second due to the molecular 
heat conduction in the liquid; and the third is due to the eddy convection. The latter is estimated from 
the data on the bubbling process. The differential equation obtained gives after integration a relation- 
ship between the local bubble diameter and the temperature difference. As a result it is found that 
(Nu) - (Re)e/s for sufficiently great Nusselt moduli under the assumption that the bubble population 
is inversely proportional to the radius of a nucleus. If one assumes that the number of bubbles per 
unit area is inversely proportional to the radius of nucleus to the m-th power, the relation 

(Nu) - (Re)l+m’z+m 

may be obtained for large (Nu). 
The theory is compared with experiments with satisfactory results. Furthermore the first crisis of 

boiling, the influence of the heated surfaces and the peculiarities of the nucleate boiling mechanism 
are analysed. 

Resume-On suppose dam l’etude suivante que le flux de chaleur dans le transport de chaleur par 
Bbullition se compose de trois composantes: la premiere due a l’tcoulement de chapelets de bulles; la 
seconde due a la conduction moleculaire de la chaleur dans le liquide; et la troisieme est due a la 
convection turbulente. La dernitre est estimee a partir des donnees sur la proccessus du bouillonne- 
ment. L’equation differentielle obtenue donne apres integration une relation entre le diambtre de 
bulle local et la difference de temperature. En resultat, on trouve que Nu - (Re)2/s pour des nombres 
de Nusselt suffisamment eleves avec l’hypothtse que le nombre de bulles est inversement proportionnel 
au rayon d’un germe. Si on suppose que le nombre de bulles par unite de surface est inversement 

proportionnel au rayon du germe a la puissance m, la relation: 

(Nu) - (Re)l+mlz+* 

peut etre obtenue pour de grands Nu. 
La theorie s’accorde avec l’exptrience d’une man&e satisfaisante. De plus, on a analyse la premiere 

crise de l’ebullition, l’inBuence des surfaces chauffees et les particularites du mecanisme de l’ebullition 
par germes. 

Zusannnenfassung-In der folgenden Untersuchung des Warmeiiberganges beimSieden wird angenom- 
men, dass der Wzirmefluss in drei Komponenten zerlegbar ist: erstens. in einen Fluss in den Blasen- 
slulen; zweitens, in einen Fluss molekularer Warmel&ung in der Fhissigkeit und drittens in einen 
Fluss durch Wirbelkonvektion. Letzter ist aus Werten der Blasenbildung abzuschltzen. Die Integration 
der Differentialgleichung fiihrt zu einer Beziehung zwischen dem iirtlichen Blasendurchmesser und 
der Temperaturdifferenz. Fur geniigend grosse Nusselt-Zahlen und mit der Annahme. dass die 
Blasendicke umgekehrt proportional dem -Keimradius ist, folgt Nu - Re2/3. Nimmt man an, dass die 
Zahl der Blasen pro Fllcheneinheit umgekehrt proportional dem Keimradius zur m-ten Potenz ist, 
so ergibt sich fur grosse Nu die Beziehung 

Nu N Rel+mla+m 

Die Theorie llsst sich mit Experimenten zufriedenstellend vergleichen. Dariiberhinaus werden der 
erste Wendepunkt der Siedekurve, der Einfluss der Heiztllchen und Besonderheiten des Mechanismus 

des Blasensiedens analysiert. 


